Retrieve "locus-to-gene" (L2G) model summary data for a gene.
Source:R/studiesAndLeadVariantsForGeneByL2G.R
studiesAndLeadVariantsForGeneByL2G.Rd
The "locus-to-gene" (L2G) model derives features to prioritize likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
Distance: Distance from credible set variants to the gene.
Molecular QTL colocalization: Colocalization with molecular QTLs.
Chromatin interaction: Interactions, such as promoter-capture Hi-C.
Variant pathogenicity: Pathogenicity scores from VEP (Variant Effect Predictor).
Arguments
- gene
Character: Gene ENSEMBL ID (e.g. ENSG00000169174) or gene symbol (e.g. PCSK9). This argument can take a list of genes too.
- l2g
Numeric: Locus-to-gene (L2G) cutoff score. (Default: NA)
- pvalue
Character: P-value cutoff. (Default: NA)
- vtype
Character: Most severe consequence to filter the variant types, including "intergenic_variant", "upstream_gene_variant", "intron_variant", "missense_variant", "5_prime_UTR_variant", "non_coding_transcript_exon_variant", "splice_region_variant". (Default: NULL)
Value
Returns a data frame containing the input gene ID and its data for the L2G model. The table consists of the following columns:
yProbaModel
: Numeric. L2G score.yProbaDistance
: Numeric. Distance.yProbaInteraction
: Numeric. Chromatin interaction.yProbaMolecularQTL
: Numeric. Molecular QTL.yProbaPathogenicity
: Numeric. Pathogenicity.pval
: Numeric. P-value.beta.direction
: Character. Beta direction.beta.betaCI
: Numeric. Beta confidence interval.beta.betaCILower
: Numeric. Lower bound of the beta confidence interval.beta.betaCIUpper
: Numeric. Upper bound of the beta confidence interval.odds.oddsCI
: Numeric. Odds ratio confidence interval.odds.oddsCILower
: Numeric. Lower bound of the odds ratio confidence interval.odds.oddsCIUpper
: Numeric. Upper bound of the odds ratio confidence interval.study.studyId
: Character. Study ID.study.traitReported
: Character. Reported trait.study.traitCategory
: Character. Trait category.study.pubDate
: Character. Publication date.study.pubTitle
: Character. Publication title.study.pubAuthor
: Character. Publication author.study.pubJournal
: Character. Publication journal.study.pmid
: Character. PubMed ID.study.hasSumstats
: Logical. Indicates if the study has summary statistics.study.nCases
: Integer. Number of cases in the study.study.numAssocLoci
: Integer. Number of associated loci.study.nTotal
: Integer. Total number of samples in the study.study.traitEfos
: Character. Trait EFOs.variant.id
: Character. Variant ID.variant.rsId
: Character. Variant rsID.variant.chromosome
: Character. Variant chromosome.variant.position
: Integer. Variant position.variant.refAllele
: Character. Variant reference allele.variant.altAllele
: Character. Variant alternate allele.variant.nearestCodingGeneDistance
: Integer. Distance to the nearest coding gene.variant.nearestGeneDistance
: Integer. Distance to the nearest gene.variant.mostSevereConsequence
: Character. Most severe consequence.variant.nearestGene.id
: Character. Nearest gene ID.variant.nearestCodingGene.id
: Character. Nearest coding gene ID.ensembl_id
: Character. Ensembl ID.gene_symbol
: Character. Gene symbol.
Details
The function also provides additional filtering parameters to narrow the results based following parameters (see below)
Examples
if (FALSE) { # \dontrun{
result <- studiesAndLeadVariantsForGeneByL2G(genes = c("ENSG00000163946",
"ENSG00000169174", "ENSG00000143001"), l2g = 0.7)
result <- studiesAndLeadVariantsForGeneByL2G(genes = "ENSG00000169174",
l2g = 0.6, pvalue = 1e-8, vtype = c("intergenic_variant", "intron_variant"))
result <- studiesAndLeadVariantsForGeneByL2G(genes = "TMEM61")
} # }